If it's not what You are looking for type in the equation solver your own equation and let us solve it.
m^2+10m-22=0
a = 1; b = 10; c = -22;
Δ = b2-4ac
Δ = 102-4·1·(-22)
Δ = 188
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{188}=\sqrt{4*47}=\sqrt{4}*\sqrt{47}=2\sqrt{47}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{47}}{2*1}=\frac{-10-2\sqrt{47}}{2} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{47}}{2*1}=\frac{-10+2\sqrt{47}}{2} $
| b.5+2b=9 | | 2x-2+12x+6=46 | | 1-5x=8x-2 | | 17+5m=18m | | -23=x-3-5x | | X+6=78,6x=72 | | 1+5y/9=14(18(3y)+18(6)) | | 3b-1+2b=14 | | z=8=9 | | -x+5x=1 | | 3x+2x=15-20-10 | | m^2-14m+22=0 | | 7(x-6)=23 | | 12x+16=-3x+136 | | (x+2)(x+3)/(x+1)(X+1)=2/3 | | 3+9x=19x+2 | | ✓2x-2=4 | | r-4+8=-1 | | (x+2)(x+3)/(x+1)(X+1)=2 | | -6a-7a=13 | | y=1200(0.2) | | y=1200(0.2^2) | | 5(u-6)=3u-48 | | -14j=7-15j | | 2+2t=-4-t-6 | | 6x-1=10x+15 | | y=1200/0.8^2 | | 1/2(4x-8)=3/2x-x+8/4 | | x/5x-12=2x+6 | | 7x-2x+5=x-6+11 | | 3h–1=11 | | -19d-6=-20d-18 |